
www.manaraa.com

ar
X

iv
:p

hy
si

cs
/0

21
00

38
v1

 [
ph

ys
ic

s.
bi

o-
ph

]
 8

 O
ct

 2
00

2

The Iterative Signature Algorithm for the analysis of

large scale gene expression data

Sven Bergmann, Jan Ihmels and Naama Barkai∗

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

February 2, 2008

Abstract

We present a new approach for the analysis of genome-wide expression data. Our

method is designed to overcome the limitations of traditional techniques, when ap-

plied to large-scale data. Rather than alloting each gene to a single cluster, we assign

both genes and conditions to context-dependent and potentially overlapping tran-

scription modules. We provide a rigorous definition of a transcription module as the

object to be retrieved from the expression data. An efficient algorithm, that searches

for the modules encoded in the data by iteratively refining sets of genes and conditions

until they match this definition, is established. Each iteration involves a linear map,

induced by the normalized expression matrix, followed by the application of a thresh-

old function. We argue that our method is in fact a generalization of Singular Value

Decomposition, which corresponds to the special case where no threshold is applied.

We show analytically that for noisy expression data our approach leads to better

classification due to the implementation of the threshold. This result is confirmed

by numerical analyses based on in-silico expression data. We discuss briefly results

obtained by applying our algorithm to expression data from the yeast S. cerevisiae.

∗Correspondence should be addressed to: Naama.Barkai@weizmann.ac.il

1

http://arXiv.org/abs/physics/0210038v1

www.manaraa.com

1 Introduction

DNA microarray experiments monitor the expression levels of thousands of genes simul-

taneously [1, 2, 3, 4]. Using this technology, large sets of genome-wide expression data

have been accumulated [5]. For example, the expression levels of the entire yeast genome

(comprising ∼ 6200 genes) have been measured for more than 1000 different experimental

conditions [6]. A large number of DNA chip experiments have also been carried out for

higher eukaryotes, such as the nematode C. elegans and the fruit fly Drosophila, as well as

for a variety of both normal and malignant human tissues.

While large scale expression data have the potential to reveal new insights into the

transcriptional network that controls gene expression, they also give rise to a major com-

putational challenge: How can one make sense of the massive expression data containing

millions of numbers? The classification of the genes and the experimental conditions is an

essential first step in reducing the complexity of such data. However, while standard tools,

like clustering algorithms [7, 8, 9, 10, 11, 12, 13, 14] (see [15, 16] for reviews) and Singular

Value Decomposition (SVD) [17,18], provide interesting results when applied to relatively

small data sets, typically containing tens of experimental conditions and at most several

hundred genes, these methods are of limited use for the analysis of large data sets. In

particular, a well-recognized drawback of commonly used clustering algorithms is the fact

that they assign each gene to a single cluster, while in fact genes that participate in several

functions should be included in multiple clusters [19, 20, 21, 22]. Moreover, both in stan-

dard clustering methods and SVD, genes are analyzed based on their expression under all

experimental conditions. This is problematic, since cellular processes are usually affected

only by a small subset of these conditions, such that most conditions do not contribute

relevant information but rather increase the level of background noise.

In a recent paper [23] we introduced a new method for the analysis of large-scale

gene expression data that was designed to overcome the above-mentioned problems (see

Refs. [21, 22] for other recent approaches). A central idea of this work was to integrate

prior biological information, like the function or sequence of known genes, into the analysis

of the gene expression data. In the present article we present a complementary method

for the analysis of large-scale data that does not require any prior knowledge beyond the

expression data. We start by providing a rigorous definition of the type of information

we aim to extract from the expression data by introducing the notion of a transcription

module (TM). A TM contains both a set of genes and a set of experimental conditions.

The conditions of the TM induce a co-regulated expression of the genes belonging to this

TM. That is, the expression profiles of the genes in the TM are the most similar to each

other when compared over the conditions of the TM. Conversely, the patterns of gene

expression obtained under the conditions of the TM are the most similar to each other

when compared only over the genes of the TM. The degree of similarity is determined

by a pair of threshold parameters. The gene threshold constrains the gene set, while

the condition threshold constrains the condition set. Importantly, distinct transcription

2

www.manaraa.com

modules may share common genes and conditions.

The precise definition of a TM as the object to be retrieved from the expression data

allows us to establish an efficient algorithm that searches for the modules encoded in the

data. Starting from a set of randomly selected genes (or conditions) one iteratively refines

the genes and conditions until they match the definition of a TM. Using a sufficiently

large number of initial sets it is possible to determine all the modules corresponding to a

particular pair of thresholds. Scanning through a range of thresholds decomposes the data

into modules at different resolutions.

This paper is organized as follows: In section 2 we provide a mathematical definition

of a transcription module. In section 3 we introduce our algorithm that searches for such

modules and compare our method with SVD. In section 4 we discuss the normalization of

the expression data. In section 5 we present analytical insight into the role of the threshold

in our algorithm. We show that for noisy expression data the application of a threshold

improves significantly the identification of transcription modules. We provide an estimate

for the maximal amount of noise for which a successful identification is still possible. In

section 6 we compare our method with other standard tools using in-silico expression data.

In section 7 we discuss briefly results obtained by applying our algorithm to real expression

data from the yeast S. cerevisiae. We conclude in section 8.

2 Formalism

2.1 The Expression Matrix

We consider data from microarray experiments given in terms of a gene expression ma-

trix E. The matrix element Ecg denotes the log-fold expression-change of gene g ∈ G ≡
{1, ..., NG} at the experimental condition c ∈ C ≡ {1, ..., NC}, where NG and NC refer to

the total number of genes and conditions, respectively. The matrix E may be viewed as a

collection of NC row vectors:

E =

gT
1

gT
2
...

gT
NC

. (1)

Each vector gT
c = (g(1)

c , g(2)
c , ..., g(NG)

c) describes the gene-profile for condition c, containing

the expression levels g(g)
c = Ecg of all the genes that were monitored under this condition.

Alternatively the expression matrix can be viewed as a collection of NG column vectors:

E = (c1, c2, . . . , cNG
) . (2)

Here each vector cg = (c(1)
g , c(2)

g , ..., c(NC)
g)T describes the condition-profile for gene g, con-

taining the expression levels c(c)
g = Ecg of this gene under all the conditions of the data

set.

3

www.manaraa.com

We define two normalized expression matrices (c.f. section 4)

EG ≡

ĝT
1

ĝT
2
...

ĝT
NC

(3)

and

EC ≡ (ĉ1, ĉ2, ..., ĉNG
) . (4)

The rows of EG and the columns of EC are given in terms of the normalized gene- and

condition-vectors

ĝc ≡
gc − 〈gc〉g∈G

|gc − 〈gc〉g∈G|
, and ĉg ≡ cg − 〈cg〉c∈C

|cg − 〈cg〉c∈C|
(5)

respectively. These vectors have zero mean (〈ĝc〉g∈G = 〈ĉg〉c∈C = 0) and unit length

(|ĝc| = |ĉg| = 1). This normalization implies that
∑

g Êcg
G = 0,

∑

g(Ê
cg
G)2 = 1 for each

condition c and
∑

c Êcg
C = 0,

∑

c(Ê
cg
C)2 = 1 for each gene g. Centering and re-scaling

the rows in EG allows for a meaningful comparison between any two conditions c and c′

through their associated gene-profiles ĝc and ĝc′. Similarly, centering and re-scaling the

columns in EC allows for the comparison of any two genes g and g′ through their associated

condition-profiles ĉg and ĉg′. Note that the normalized matrices EG and EC in general

are not equal.

2.2 Transcription Modules

Our goal is to find sets of co-regulated genes Gm ⊂ G, together with the relevant experi-

mental conditions Cm ⊂ C that induce their co-regulation. We refer to such a combined

set, Mm = {Gm, Cm}, as a transcription module (TM). Here the index m ranges between

one and the number of transcription modules, NM . Biologically a TM may be associated

with a particular cellular function. Ideally each TM would correspond to a transcription

factor that regulates the genes in Gm and that is activated under the conditions in Cm.

Of course, a one-to-one correspondence between transcription modules and transcription

factors is an over-simplification, but it can still provide useful insight into the nature of

the expression data. First, the total number of transcription factors, NTF , is much smaller

than the number of genes: NTF ≪ NG. Thus we expect also the number of transcription

modules, and therefore the effective dimensionality of the expression matrix to be rela-

tively small: NM ≪ NG. Second, the number of genes activated by a single transcription

factor, N
(m)
G , is known to be limited: N

(m)
G ≪ NG. Third, different transcription factors

can regulate the same gene and can be activated under the same experimental conditions.

Hence distinct modules may share common genes and conditions.

4

www.manaraa.com

Mathematically a TM can be defined as follows:

∃(TC , TG) :

Cm(Gm) =
{

c ∈ C : 〈Ecg
G 〉g∈Gm

> TC

}

Gm(Cm) =
{

g ∈ G : 〈Ecg
C 〉c∈Cm

> TG

}

, (6)

where TC and TG are two threshold parameters. The above definition states that for each

condition c in the TM the average expression level of the genes in the TM, 〈Ecg
G 〉g∈Gm

, is

above a certain threshold TC . Conversely, for each gene g in the TM the average expression

level over the conditions of the TM, 〈Ecg
C 〉c∈Cm

, is also above some threshold TG. This

reciprocal dependence between the genes and the conditions associated with a TM implies

that, considering only the genes of the module, the conditions of the module are exactly

those for which the co-expression is the most stringent. Similarly, considering only the

conditions of the module, the genes of the module are the most tightly co-regulated. Note

that our definition of a TM is symmetric with respect to genes and conditions, such that

no preference is given to either of them. In particular, we use the expression matrix EG

(normalized with respect to genes) in order to specify the conditions of the module (Cm),

given the genes of the module (Gm). Similarly we use EC (normalized with respect to

conditions) to specify the genes in Gm, given the conditions in Cm.

We would like to reformulate and somewhat generalize the definition of a TM in eq. (6)

by introducing vector notation. To this end we represent the genes and the conditions of

a TM by a pair of a gene-vector gm = (g(1)
m , g(2)

m , ..., g(NG)
m)T and a condition-vector cm =

(c(1)
m , c(2)

m , ..., c(NC)
m)T . A non-zero component g(g)

m (c(c)
m) implies that the gene g (condition

c) is associated with the module m. Consider the linear transformations

cproj
m ≡ EG gm =

ĝT
1 gm

ĝT
2 gm
...

ĝT
NC

gm

and gproj
m ≡ ET

Ccm =

ĉT
1 cm

ĉT
2 cm
...

ĉT
NG

cm

. (7)

The resulting vectors contain the projections of the vectors gm and cm, that specify the

TM, onto the set of the (normalized) gene-profiles {ĝc} and condition-profiles {ĉg}, defined

in eq. (5), that describe the expression data. For a binary vector gm the components of

cproj
m are just the expression levels summed over the genes of the TM for each condition in

the data set. Likewise for a binary vector cm the components of gproj
m are the expression

levels summed over the conditions of the module for each gene.

The consistency requirement in eq. (6) can then be written as

∃(tC , tG) :

{

cm = ftC (cproj
m)

gm = ftG(gproj
m)

, (8)

where tC and tG are the condition- and the gene-threshold, related to TC and TG, respec-

5

www.manaraa.com

tively. The threshold function

ft(x) ≡

w(x1) · Θ(x̃1 − t)
...

w(xNx
) · Θ(x̃Nx

− t)

 (9)

acts separately on each of the Nx components xi of the vector x and yields the prod-

ucts of a weight-function w(x) and a step-function Θ(x) as output. The arguments of

the step-function, x̃i = (xi − µ(x))/σ(x), have been centered and re-scaled. We use

the mean as center, µ(x) = 〈x〉, and the expected or measured standard deviation,

σ(x) =
√

∑Nx

i (xi − 〈x〉)2/Nx, as scale-factor. The step-function sets to zero all elements

of the vector x that do not exceed µ(x) by at least t · σ(x). (Down-regulation can be

captured by replacing x̃i → |x̃i| in eq. (9).) Using w(x) = 1 as weight-function all the sig-

nificant elements are set to unity. This binary formulation corresponds to the consistency

requirement in eq. (6). (To capture down-regulation one uses sign(x) as weight-function.)

It is straightforward to extend our formalism using different weight-functions. In this case

the entries of the gene- and condition-vector become continuous, and their value deter-

mines the significance of a particular gene or condition, respectively. As we shall see, a

particularly relevant choice is w(x) = x in which case ft(x) is semi-linear.

The compact definition of a TM in eq. (8) can be understood as follows: Applying

the threshold function ftC to cproj
m results in a non-zero component c(c)

m of the module’s

condition-vector cm, if the corresponding gene-profile ĝc is sufficiently aligned with the

gene-vector gm of the module. Biologically this means that a significant fraction of the

genes in the module are co-regulated under condition c. Similarly, the application of

ftG to gproj
m results in a non-zero component g(g)

m in the module’s gene-vector gm, if the

corresponding condition-profile ĉg is sufficiently aligned with the condition-vector cm of

the module. Biologically this implies that a significant fraction of the conditions in the

module induce a co-regulated expression of gene g.

It is important to note that the content of a particular module Mm = {Gm, Cm} depends

on the pair of thresholds (tG, tC). In many cases for slightly larger thresholds there exists

a related module Mup
m , such that Mup

m ⊂ Mm. Similarly, for somewhat smaller thresholds

there usually exists a module Mdown
m , such that Mm ⊂ Mdown

m . Thus there are nested sets

of modules, M top
m ⊂ ... ⊂ M bottom

m that persist over a finite range of the thresholds. This

hierarchical structure resembles the tree structures obtained from clustering. However, in

our case distinct branches may share common genes or conditions.

3 The Iterative Signature Algorithm

The rigorous definition of a transcription module in principle allows us to determine the

modules encoded in the expression matrix by testing all possible sets {Gm, Cm} for their

compliance with eq. (8). However, since the number of such sets scales exponentially with

6

www.manaraa.com

the number of genes and conditions, such an approach is completely infeasible computa-

tionally. We therefore suggest a different approach. Our principle idea is to search for

solutions of the consistency equation in (8) through the map defined by

c(n+1) = ftC (EG g(n)) , (10)

g(n+1) = ftG(ET
C c(n+1)) . (11)

The first equation assigns a condition-vector c(n+1) to a given gene-vector g(n). We refer

to the component c(n+1)
c of this vector as a condition score. This score is non-zero only if

the corresponding gene-profile ĝc, defined in eq. (5), is sufficiently aligned with the gene-

vector g(n)
m . In the subsequent step in eq. (11) the component (or gene score) g(n+1)

g of the

gene-vector g(n+1)
m is assigned a non-zero value only if the corresponding condition-profile

ĉg is sufficiently aligned with the condition-vector c(n+1)
m .

In a recent work [23] we have applied the map in eqs. (10) and (11) to a variety of

biologically motivated input-sets {g(0)
i } assembled according to prior knowledge of the

regulatory sequence or function of the genes. Sets of co-regulated genes and co-regulating

conditions were constructed from recurrent realizations of the output-sets defined by g(1)

and c(1). In this work we pursue a different strategy, namely we apply the maps in eqs. (10)

and (11) iteratively by re-using the gene-vector g(1) as input for eqs. (10) and (11) in

order to obtain new output-sets defined by c(2) and g(2). Repeating this procedure we

obtain {g(3), c(3)} from g(2) and so on. In general, the series {g(0), g(1), g(2), g(3), ...} rapidly

converges to a “fixed point” gene-vector g(∗). In general the series {g(0), g(1), g(2), g(3), ...}
rapidly converges and we can define a “fixed point” gene-vector g(n∗) which satisfies

|g(∗) − g(n)|
|g(∗) + g(n)| < ε (12)

for all n above a certain number of iterations. The parameter ε determines the accuracy of

the fixed point. g(∗) depends both on the “seed” g(0) and the thresholds tG and tC , which

are fixed parameters. Together with the associated condition-vector c(∗) it defines a TM,

since (g(∗), c(∗)) by definition solve eq. (8). We call this procedure the Iterative Signature

Algorithm (ISA).

Although the set of possible input seeds is huge, usually there exist only a rather limited

number of fixed points for a given set of thresholds (tG, tC). Therefore, in general the ISA

is applied as follows: (1) generate a (sufficiently large) sample of input seeds {g(0)
m }, (2) find

the fixed points (g(∗)
m , c(∗)

m) corresponding to each seed through iterations and (3) collect

the distinct fixed points in order to decompose the expression data into modules. The

structure of this decomposition depends on the choice of thresholds (tG, tC). Scanning over

different values for (tG, tC) reveals the modular structure at different resolutions: Lower

thresholds yield larger units whose co-regulation is relatively loose, while higher thresholds

lead to smaller, tightly co-regulated modules. Each fixed point (g(∗)
m , c(∗)

m) has its “basin of

attraction”, i.e. the set of seeds that converge to it under the iterative scheme in eqs. (10)

7

www.manaraa.com

and (11). The size of this set is a measure of the “convergence radius”, while the average

number of iterations, that is needed until eq. (12) is satisfied, characterizes the “depth” of

this basin.

The computation time of any algorithm, designed for the analysis of large scale ex-

pression data, is of crucial importance. For algorithms that require the full correlation

matrices (like clustering or SVD), already the computation of these two matrices can be

very intensive, since its computation time scales like tcorr
comp ∝ N2

GNC + N2
CNG. However,

the ISA is not based on this kind of information. Rather than squaring the expression

matrix, only multiplications of the expression matrix with sparse matrices (of size NG×NI

or NC × NI), where NI is the number of input sets, have to be performed. Due to the

sparseness, the computation time of the ISA goes like tISA
comp ∝ NiterNI(NCÑG + NGÑC),

where ÑG and ÑC refer to the average number of genes and condition, respectively, whose

scores are above the threshold, and Niter is the number of iterations until convergence.

Thus the computation time of the ISA scales linearly with NG and NC . In general only

very few iterations Niter are needed to find the fixed points. A large number of input sets

NI increases the chances to find the fixed points with a small convergence radius. However,

for practical purposes it is useful to accumulate progressively sets a fixed points by running

the ISA repeatedly with a moderate value for NI , thus increasing gradually the accuracy

of the fixed point decomposition. Importantly, ÑG and ÑC are much smaller than NG and

NC as long as the respective thresholds are high enough. Finally, we note that tISA
comp could

be further improved by choosing the input seeds not completely at random, but using the

information of previous runs (e.g. those at a different threshold).

3.1 Comparison with Singular Value Decomposition

For w(x) = x, in the absence of thresholds and neglecting the two different normalizations

of the expression data, the iterative scheme reads

ĉ(n) =
Eĝ(n−1)

|Eĝ(n−1)|
, (13)

ĝ(n) =
ET ĉ(n)

|ET ĉ(n)|
. (14)

The fixed points of the above equations correspond to the pairs of vectors (ĝm, ĉm), where

ĝm = gm/|gm| and ĉm = cm/|cm| are the normalized eigenvectors of ET E and EET , re-

spectively. Both eigenvectors are associated with the common eigenvalue µ2
m = |Eĝm|2 =

|ET ĉm|2. It is interesting to note that a Singular Value Decomposition (SVD) of the ex-

pression matrix yields exactly those eigenvectors and eigenvalues [24,25] (see appendix A.1

for brief review of SVD). This decomposition is usually performed in a sequential manner.

In this case one determines first the pair (ĝ1, ĉ1) associated with the largest eigenvalue µ2
1.

In fact this pair emerges as a fixed point of the above equations for any seed g(0) that is

8

www.manaraa.com

not perpendicular to ĝ1. It can be shown that the matrix

E1 = µ1ĉ1 ĝT
1 . (15)

provides the best rank-1 approximation to E = E1 + R1, where R1 denotes the residual

term. A subsequent diagonalization of R1 yields the (orthogonal) pair (ĝ2, ĉ2) associated

with the second largest eigenvalue µ2. Continuing this procedure eventually decomposes

the expression matrix into a sum

E =
NM
∑

m

Em + RNM
(16)

of the rank-1 matrices Em = µmĉm ĝT
m with µm = |cm||gm|. These matrices can be viewed

as a special kind of transcription modules.

One of the advantages of SVD is that the significance of each modular component Em

can be determined simply according to the magnitude of the associated eigenvalue. The

components associated with small eigenvalues are likely to reveal no real information and

to contain only noise. Thus the spectrum of eigenvalues can give some indication of the

dimensionality of the data: The existence of NM eigenvalues that are significantly larger

than the remaining eigenvalues suggests that there are NM dominant components. Similar

to SVD the lengths of the fixed point vectors of the ISA provide a measure of the relative

importance of the associated TM. Specifically, |g(∗)
m |2 =

∑

g∈Gm
(g(∗)

g)2 reflects the size of the

gene set and (for w(x) = x) the strength of its co-regulation, while |c(∗)
m |2 =

∑

c∈Cm
(c(∗)

c)2

reflects the size of the condition set and the strength of the co-regulation induced by this

set.

While the similarity between the ISA and SVD is instructive, there are several important

differences:

• Applying the threshold functions in eqs. (10) and (11) yields a different spectrum

of fixed points: Sets of genes that are fixed points of the iterative scheme for a

particular choice of the threshold, in general do not correspond to the eigenvectors

of the expression matrix.

• The thresholds affect the stability of the fixed points: While the iterations in eqs. (13)

and (14) have only a single stable fixed point (ĝ1, ĉ1), the ISA in eqs. (10) and (11)

usually possesses several stable fixed points. This is essentially because the thresholds

induce an “effective orthogonality” by setting the small scalar products in eq. (7) to

zero. Consequently input sets that are almost (but not exactly) orthogonal to the

strongest fixed point, do not flow towards this point under the iterations, but converge

to a different fixed-point.

• SVD is very sensitive to the (unavoidable) noise in the expression data. This noise

induces mixing between modules that would be orthogonal to each other in the

9

www.manaraa.com

absence of noise. In the ISA the threshold function provides an efficient way to deal

with such noise. Excluding the bulk of the genes and conditions from the expression

data at each step of the iterative procedure allows to pick up co-regulated units that

would otherwise be masked by the noise.

• For SVD distinct eigenvectors ĝm and ĝm′ as well as ĉm and ĉm′ are orthogonal to each

other, since they diagonalize a symmetric matrix. The constraint of orthogonality is

not present in the ISA.

• SVD only reveals one single decomposition of the expression matrix into modules.

As for the ISA, changing the values of the thresholds allows to analyze the modular

structure recorded in the expression matrix at different resolutions.

• For SVD the expression data has to be normalized either according to genes or con-

ditions. The choice of data normalization in general follows from the interpretation

of the data. Demanding maximal variance among the principal components, one is

led to center the data either as in EG or EC (see appendix A.1 on SVD for details).

Thus the symmetry between the genes and the conditions is explicitly broken when

committing to either EC or EG. In contrast, the ISA avoids this bias by alternating

between the two possible normalizations at each step of the iterative procedure in

eqs. (10) and (11).

We will discuss now some of these points in more detail.

4 The proper data normalization

Given the “raw” expression data contained it is difficult to compare two experiments (gc

and gc′) or two genes (cg and cg′). This is because different experiments may affect the

expression levels at a different scale. For example one condition may change the expression

of many genes by a very large factor (≫ 1) while another condition affects mainly the

same genes, but shifts their expression level by a much smaller amount. Although the

two conditions are related, this relation is not explicit in the expression data. Moreover,

recording the expression levels with different microarray techniques as well as variations in

the sample preparation can change the scale of the results. Similarly the dynamic range

of two distinct genes could differ greatly even though the shape of their condition profiles

might be similar. To overcome this difficulty we have introduced the normalized matrices

EG and EC (c.f. eqs. (3) and (4)).

In order to study the impact of the normalization on our algorithm we generated an

in-silico expression matrix E corresponding to two overlapping modules of equal size and

strength (see section 6 for more details on the model used to generate these data). We

selected random scale factors sg, sc ∈ [0, 1] for each gene g and condition c from a uniform

distribution and transformed the elements of the expression matrix according to Ecg →

10

www.manaraa.com

Ecg
S ≡ Ecgsgsc. Unlike the original expression matrix E, the re-scaled expression matrix ES

(shown in Fig. 1a) corresponds to the realistic scenario where the entities of the expression

data have been recorded at different scales. From ES we calculated the normalized matrices

EC and EG.

The question we ask is which normalization has to be employed in order to reveal the

“correct” genes from the conditions associated with the underlying module, and which

normalization leads to the “correct” conditions, given the genes of the module. To answer

this question we defined the vectors g1 and c1 by assigning non-zero components only for the

genes and conditions of one of the modules, respectively. Using these vectors we computed

cS = ESg1, cC = ECg1 and cG = EGg1 as well as gS = ET
Sc1, gC = ET

Cc1 and gG =

ET
Gc1. The components of the resulting gene- and condition-vectors are plotted in Fig. 1b

and c, respectively.

One can see that only for gC and cG (corresponding to the the “correct” normalizations

as used in the ISA, c.f. eqs. (10) and (11)) all the components associated with the genes

and conditions of the module (specified by (g1, c1)) are significantly larger than the oth-

ers. For missing or “wrong” normalization there are large fluctuations among the vector

components. Hence applying a threshold would only capture part of the relevant genes or

conditions in this case. Thus EC is best suited to identify the genes of a module from a set

of conditions that is a good approximation of Cm, while EG is the proper normalization

to obtain the conditions of a module from a set of genes close to Gm. Note that using

these “correct” normalizations, it is even possible to distinguish the genes and conditions

associated exclusively with the specified module from those that belong also to the other

module, because the latter obtain a somewhat lower score.

5 Analysis of the ISA

The fundamental issue is how well the ISA can reveal relatively small, noisy, and possibly

overlapping modules from the expression matrix. In this section we address this ques-

tion by considering a simple model where the expression matrix corresponds to a single

transcription module. Our idea is to consider the gene-vector that undergoes iterations

as a stochastic entity and to study how its distribution evolves under the iterations. This

approach allows us to quantify how the efficiency of our algorithm depends on the size of

the module and the noise in the expression data.

5.1 Linear recursions

In the following we consider a slightly simplified iterative scheme, where no threshold

function is applied to the condition vector. In this case one can write an iterative equation

that depends only on the gene vector. If, moreover, no gene threshold is applied the

11

www.manaraa.com

iterations are defined through the linear equation (c.f. eq. (48) in the Appendix)

ĝ(n) =
Cg(n−1)

|Cg(n−1)| . (17)

Here the matrix C = ET E emerges from applying first eq. (13) and then eq. (14). As we

mentioned before the fixed points of this linear recursion are the eigenvectors of C.

Let us consider the simplest scenario corresponding to a single set of co-regulated genes

G1 ⊂ G whose co-regulation is triggered by the conditions in C1 ⊂ C. Specifically, we

assume that all the genes in G1 are equally important, such that a noise-free measurement

would result in identical condition profiles for these genes. In this ideal case the matrix

elements Cgg′ would equal some constant if both g and g′ belong to G1 and be zero otherwise.

In order to model the effect of noisy data we consider the elements of C as random variables

with mean value

〈Cgg′〉 =

{

µC g, g′ ∈ G1

0 otherwise
, (18)

and variance VC for all g, g′ ∈ G. In the absence of noise (i.e. VC = 0) the matrix C possesses

only a single (non-trivial) eigenvector g(0), whose non-zero components specify the genes

of the TM. However, for VC > 0 this is not true anymore.

Assume we knew the eigenvector of C for VC = 0 and use it as a (binary) seed g(0) for

eq. (17) with a noisy realization of C (i.e. VC > 0). The question is whether the fixed-

point resulting from g(0) still characterizes the genes of the module. In general the vector

ĝ(1) obtained by the first iteration does not coincide with ĝ(0). Due to the probabilistic

description of C we can only determine the mean and the variance of the components of

g(1) = Cg(0). The mean of g(1)
g =

∑

g′ Cgg′g
(0)
g′ is equal to the number of genes in the module,

N
(m)
G , times µC if g ∈ G1, and zero otherwise. Similarly the variance of g(1)

g is N
(m)
G VC. Here

we only used the additivity of the mean and the variance. However, already for g(2)
g in the

next iteration we need to deal with products of random variables. To this end we note that

for two independent random variables a and b we have (see appendix A.2 for proof)

〈ab〉 = 〈a〉〈b〉 and V (ab) = V (a) V (b) + V (a) 〈b〉2 + V (b) 〈a〉2 . (19)

Using these results we find that the mean values of the components of the vector g(n) =

Cg(n−1) are given by

〈g(n)
g 〉 =

{

µ
(n)
G ≡ N

(m)
G µC µ

(n−1)
G g ∈ G1

0 g 6∈ G1
, (20)

where µ
(n−1)
G denotes the mean of the components g(n−1)

g associated with the module

(g ∈ G1). Only for the genes in G1 there are N
(m)
G matrix elements in C that contribute

constructively to 〈g(n)
g 〉. Similarly, the variances of g(n)

g are

V (g(n)
g) =

V
(n)
G ≡ ∆NGVCṼ

(n−1)
G + N

(m)
G

(

VCV
(n−1)
G + VC(µ

(n−1)
G)2 + V

(n−1)
G µ2

C

)

g ∈ G1

Ṽ
(n)
G ≡ ∆NGVCṼ

(n−1)
G + N

(m)
G VC

(

V
(n−1)
G + (µ

(n−1)
G)2

)

g 6∈ G1

,

(21)

12

www.manaraa.com

where ∆NG ≡ NG −N
(m)
G denotes the number of genes that do not belong to the module.

Note that V
(n)
G has an additional term with respect to Ṽ

(n)
G , due to the contribution of the

non-zero mean values in C.

In order to assess whether the iterations improve the separability between distributions

of the genes within (g ∈ G1) and outside (g 6∈ G1) the module, we introduce the re-scaled

variances

v
(n)
G ≡ V

(n)
G

(µ
(n)
G)2

and ṽ
(n)
G ≡ Ṽ

(n)
G

(µ
(n)
G)2

. (22)

Note that v
(n)
G and ṽ

(n)
G are dimensionless and invariant under the normalization of the gene-

vectors. v
(n)
G ≪ 1 implies that the distribution of the genes associated with the module is

well separated from the distribution of the genes that do not belong to the module. Using

eqs. (20) and (21) we obtain the following recursive equations

ṽ
(n)
G =

∆NGvC

(N
(m)
G)2

ṽ
(n−1)
G +

vC

N
(m)
G

(

v
(n−1)
G + 1

)

, (23)

v
(n)
G = ṽ

(n)
G +

v
(n−1)
G

N
(m)
G

, (24)

where vC ≡ VC/µ
2
C is the (fixed) noise-to-signal ratio of the expression matrix.

If N
(m)
G ≫ 1 the second term in eq. (24) is negligible and we can ignore the small differ-

ence between v
(n)
G and ṽ

(n)
G . Then, setting ṽ

(n)
G = v

(n)
G in eq. (23) leads to the approximate

recursive equation

v
(n)
G =

NGvC

(N
(m)
G)2

v
(n−1)
G +

vC

N
(m)
G

. (25)

This equation converges to

v
(∗)
G ≡

N
(m)
G

vC
− NG

N
(m)
G

−1

, (26)

provided that

vC < vcrit
C ≡ (N

(m)
G)2

NG

. (27)

For further reference we state this result also for the signal-to-noise ratio

ρ
(n)
G ≡ µ

(n)
G

√

V
(n)
G

= (v
(n)
G)−1/2 . (28)

The corresponding fixed-point value equals to

ρ
(∗)
G =

[

N
(m)
G

(

ρ2
C − (ρcrit

C)2
)]1/2

, (29)

13

www.manaraa.com

if

ρC ≡ µC√
σC

> ρcrit
C ≡

√
NG

N
(m)
G

, (30)

and is zero otherwise.

The interpretation of the critical value vcrit
C for the noise in the expression data is

straightforward: Only sets of genes that are sufficiently large and whose co-regulation

is recorded in the expression matrix with relatively low noise (i.e. vC < vcrit
C) can be

captured by the iterative procedure without threshold in eq. (17). Actually eq. (30) is only

a necessary condition for the identification of a module, since for a reliable separation of

the distributions of the gene-scores associated with the module, we need ρ
(∗)
G ≫ 0. As

we mentioned before, the number of genes associated with cellular functions is expected

to be rather limited, N
(m)
G ≪ NG. Therefore we conclude that eq. (30) presents a serious

limitation for the extraction of biologically relevant modules through the analysis of the

eigenvectors of C (as in SVD).

5.2 Noise reduction by the threshold function

As discussed in the previous section the noise in the expression data may obstruct the

identification of a TM. A fundamental aspect of the threshold functions in the ISA is to

reduce the effect of such noise by excluding the bulk of the genes and conditions that do

not contribute information but rather increase the level of background noise.

To illustrate this point, let us repeat the study of noise propagation presented above

for the simplified iterative scheme like in eq. (17), but with the linear map followed by a

threshold function:

g(n) = ft(Cĝ(n−1)) , (31)

where ft is defined in eq. (9) and we use a linear weight-function w(x) = x. Let us assume

that the gene scores are distributed according to normal distributions N (x; µ, σ), where µ

and σ refer to the mean and the standard deviation of the random variable x. As a result

of the threshold function only

Ñ
(m)
G = N

(m)
G

∫

∞

t
N (ρ; ρ

(n−1)
G , 1) dρ (32)

genes from the module contribute constructively to the mean in eq. (20). Similarly, only

Ñ
(m)
G genes from the module and

∆ÑG = ∆NG

∫

∞

t
N (ρ; 0, 1) dρ (33)

genes outside the module contribute to the variance of g(n)
g in eq. (21). Ñ

(m)
G is the expected

number of genes in the module, whose score has not been set to zero by the threshold

function. Similarly, ∆ÑG is the expected number of genes that do not belong to the

14

www.manaraa.com

module, but have a non-zero score. The crucial point is that, because of the different mean

values of the two distributions, the threshold function excludes more genes that do not

belong to the module than genes that do belong to the module. For example, if ρ
(0)
G = 3

for the initial (normal) distribution, then a threshold t = 2 would remove almost 98%

of the genes outside the module (∆ÑG ≃ 0.023 × ∆NG), but less than 16% of the genes

associated with the module (Ñ
(m)
G ≃ 0.841×N

(m)
G). We note that the precise shape of the

distribution function is in fact not crucial, since our derivation relies only on the additivity

of the mean values and variances, and eq. (19).

It follows that the mean values and variances of the components of the vector g(n) are

given by the same expression as in eqs. (20) and (21), respectively, except that we have

to replace N
(m)
G by Ñ

(m)
G and ∆NG by ∆ÑG. Substituting the effective numbers Ñ

(m)
G and

∆ÑG into eqs. (20) and (21) the argument leading to the expression for the fixed-point

signal-to-noise ratio in eq. (29) is essentially unchanged, and we have

ρ
(∗)
G =

[

Ñ
(m)
G

(

ρ2
C − (ρ̃crit

C)2
)]1/2

, (34)

with

ρ̃crit
C ≡

√

Ñ
(m)
G + ∆ÑG

Ñ
(m)
G

. (35)

Note that unlike for eq. (29), the right-hand side of eq. (34) still depends on ρ
(∗)
G through

Ñ
(m)
G . Therefore eq. (34) is an integral equation for ρ

(∗)
G which can be solved numerically.

A graphical solution of this equation is provided in Fig. 2 for different thresholds and a

specific choice of the parameters NG, N
(m)
G and vC (see caption for details).

As can be seen in Fig. 3a applying a threshold function improves significantly the

identification of the module. We show the fixed point value of the signal-to-noise ratio, ρ
(∗)
G ,

as a function of both the threshold t and the (fixed) signal-to-noise ratio ρC of the expression

data. In the absence of a threshold function ρ
(n)
G converges to zero if ρC is below some critical

value ρcrit
C . Applying a threshold, ρ

(n)
G converges to a finite value, even if ρC < ρcrit

C (but

ρC > ρ̃crit
C), indicating the identification of the module. Moreover, one can see from Fig. 3a

that there is an optimal regime for the threshold t, where ρ
(∗)
G (t, ρC) is (nearly) maximal.

Within this regime ρ
(∗)
G (t, ρC) depends only weakly on t, so the convergence is robust with

respect to the exact choice of the threshold. The size of this regime increases with ρC.

In order to quantify the relative increase of the fixed point value of the signal-to-noise

ratio ρ
(∗)
G (t, ρC) due to the application of the threshold function we define the ratio

r(t, ρC) ≡
ρ

(∗)
G (t, ρC) − ρ

(∗)
G (ρC)

ρ
(∗)
G (t, ρC)

, (36)

where ρ
(∗)
G (ρC) refers to the value to which the signal-to-noise ratio converges when no

threshold is applied. For ρ
(∗)
G (t, ρC) = 0 we set r(t, ρC) to zero. We show r(t, ρC) as a

function of t and ρC in Fig. 3b. The figure shows that there exists a large region in the

15

www.manaraa.com

parameter space of t and ρC < ρcrit
C

, where the iterations only converge to a positive value

due to the threshold. Moreover, even for ρC > ρcrit
C , where the iterative schemes converges

to a positive value also without a threshold, there exists a large region, where ρ
(∗)
G (t, ρC)

is significantly larger than ρ
(∗)
G (t). Thus we conclude that the threshold function improves

significantly (and in certain cases makes at all possible) the convergence of a noisy input

set to a gene-vector that specifies the TM.

We have also performed numerical simulations of the iterative scheme in eq. (31). To

this end we employed in-silico expression data that were generated according to eq. (18)

and superimposed with a certain level of noise. The initial gene sets were composed such

that only the distribution of the genes scores associated with the module had a non-zero

mean value, while the distribution of the remaining genes was centered around zero. The

simulation allowed us to trace the evolution of the two distributions under the iterations.

The results indicate a good agreement between the numerical and the analytical results.

Details of this analysis are presented in Fig. 4. In particular, in Fig. 4d we show an example

where only the application of a proper threshold leads to a separation between the two

distributions.

6 Beyond the single module

In order to study the ISA in a more realistic scenario, we have performed further numerical

simulations based on in-silico expression data encoding several, possibly overlapping tran-

scription modules. These data were generated according to the following simple model:

Each module Mm is governed by a single (virtual) transcription factor whose activity is

described by a pair of vectors {gm, cm}. The non-zero components g(g)
m of the gene-vector

gm specify the genes that are transcribed if the transcription factor m is active, while the

non-zero components c(c)
m of the condition-vector cm specify the conditions that activate

this transcription factor. Then for NM modules the log expression of gene g at condition c

is defined as Ecg =
∑NM

m=1 g(g)
m c(c)

m . The final expression matrix is obtained by adding noise

to these matrix elements.

6.1 Expression data corresponding to two modules

As initial example we consider in-silico expression data based on two transcription factors.

We defined the components c(c)
m and g(g)

m for m = 1, 2 such that there are two overlapping

transcription modules M1 and M2 (see Fig. 5 for details). We applied the ISA to a collection

of input sets composed of randomly chosen genes. We found that the structure of the

resulting fixed points depends strongly on the threshold tG. Fig. 5b shows the corresponding

output sets for a discrete choice thresholds: For a very low threshold (t ≃ −2) the output

sets contain essentially all the genes. Applying a somewhat higher threshold (t ≃ −1) yields

output sets containing all the genes that are associated with either of the two modules.

16

www.manaraa.com

For a moderate threshold (t ≃ 0) there are two types of output sets, comprising either the

genes of M1 or M2. For a high threshold (t ≃ 1) all the output set contain only those

genes that belong to both modules. Finally, for a very high threshold (t ≃ 2) the output

sets are empty. For intermediate values of the threshold value one observes relatively

sharp transitions between these well-defined fixed points (Fig. 5c). At these transitions

the correspondence between the output sets and the modular structure of the data is less

precise.

We have also varied the condition threshold tC . Interestingly, for not too large a

threshold (tC <∼ 2) the resulting gene output sets are almost independent of the choice of

tC . However, the condition output sets depend critically on the value of tC and exhibit

a similar behavior as the gene output sets in terms of structure (not shown). This is

not surprising, since the ISA is symmetric with respect to genes and conditions. We

conclude that scanning over different values of tG and tC reveals the modular structure

of the expression data, starting from the “supermodule” M1
⋃

M1, over its overlapping

components M1 and M2, to the “submodule” M1
⋂

M1.

6.2 Expression data corresponding to many modules

The above example shows that the ISA can identify overlapping modules. However, for

NM = 2 there exist only 22 = 4 possible transcriptional states, so the 100 conditions of the

expression data are highly redundant. For real data the situation is reverse: The number

of experimental conditions is much smaller than the possible number of transcriptional

states. In order to study how the ISA deals with such a scenario we considered a set

of more realistic models based on many transcription modules. We investigated to what

extend the ISA, as well as hierarchical clustering and SVD, were able to reconstruct these

modules from the respective in-silico expression data.

In the first numerical experiment we studied how the different algorithms handle noisy

data. To this end we generated expression matrices corresponding to 1050 genes and

1000 experimental conditions that belong to 25 modules of different sizes, each associated

with a transcription factor. In order to focus on the effect of noise we considered only non-

overlapping modules that do not share any genes or conditions. Onto the binary expression

data we superimposed noise from a random distribution. We varied the width σ of this

distribution, simulating different levels of noise.

In order to quantify how well the modules were identified by the different methods we

proceeded as follows: For SVD we collected the 25 eigenvectors of the gene-gene correlation

matrix that were associated with the largest eigenvalues. For each of the 25 modules we

selected the eigenvector that had the largest overlap with the gene-vector characterizing

the module, and in Fig. 6 we show the average Pearson coefficient between these two

vectors (triangles). For hierarchical clustering we used the matlab implementation for

average linkage to compute the complete hierarchical cluster tree. Using this cluster tree we

partitioned the expression matrix using different cutoffs such that the resultant partitions

17

www.manaraa.com

contained at least 15 and at most 40 clusters. From all these partitions we selected the one

whose clusters had the highest average overlap with the gene content of the modules. This

overlap is shown in Fig. 6 (squares). Finally, for the ISA we re-constructed the modules

from the fixed points that occurred repeatedly. Namely, in order to avoid artifacts due to

distinct, but very similar fixed points, we “fused” these solution using a procedure that

resembles agglomerative clustering, albeit for modules rather than genes (see Ref. [23]

for details). The fraction of correctly identified genes per module (circles) as well as the

fraction of correctly identified modules (asterisks) is shown in Fig. 6. We conclude that for

noisy data the identification capability of the ISA is superior to that of SVD and clustering.

In particular, SVD is very sensitive to the addition of noise and fails to identify the modules

accurately, even for a small level of noise. Clustering can handle a moderate amount of

noise, but not as much as the ISA.

A second numerical experiment was designed to study quantitatively the ability to

identify overlapping modules. We specify the regulatory complexity by the the number

of transcription factors per gene nTF . Only if each gene (and condition) is associated

with exactly one transcription factor (nTF = 1) the expression matrix can be written

in block-diagonal form. For larger values of nTF distinct modules share common genes

and conditions and the expression matrix cannot be reorganized into in block-diagonal

shape. We applied the SVD, hierarchical clustering and the ISA to the expression matrices

generated for nTF = 1, ..., 6 and evaluated the outputs in the same manner as described

above (see Ref. [23] for related results). The results are shown in Fig. 7. One can see that

the ISA could successfully identify all the transcription modules even in the case of highly

overlapping modules. In contrast, for nTF > 1 the identification capabilities of SVD and

clustering rapidly decrease. This is because the clustering algorithm does not allow for

multiple assignments of one gene to different modules and therefore usually captures only

small, incomplete fractions of the overlapping modules. Similarly, if the expression matrix

cannot be reorganized into block-diagonal shape due to the overlap between the modules,

the eigenvectors identified by SVD fail to characterize the modules properly.

7 Applying the ISA to yeast expression data

The analytical and numerical studies presented above indicate that the ISA is well-suited for

the analysis of expression data. In this section we give a brief presentation of the biological

insight that can be obtained from applying our method to real data. We analyzed a diverse

set of more than 1000 DNA-chip experiments that were obtained by different groups [6].

The yeast S. cerevisiae is an ideal model organism to test our algorithm, due to the wealth

of expression data and the large amount additional biological knowledge that exists for

this organism.

We have applied the ISA to the yeast expression data using different values for the

gene-threshold tG = 1.8, 1.9, ..., 4.0, while the condition-threshold was fixed to tC = 2.0.

18

www.manaraa.com

(As we pointed out previously the gene-content of the modules depends only weakly on the

exact choice for tC .) For each value of tG we employed ∼ 20, 000 randomly composed initial

gene sets of various sizes in the search for fixed points. The modules were reconstructed

from the recurrent fixed points using a similar algorithm as for the in-silico expression

data. Indeed such a processing of the “raw” fixed points is needed to avoid many similar

modules that biologically correspond to the same co-regulated unit.

The number of modules increases with tG, ranging between five at the lowest level

(tG = 1.8) to ∼ 100 at the highest resolution (tG = 4). In contrast, the typical module size

declines rapidly as a function of tG. The step-wise increasing of tG exposed many chains

of closely related modules that persist for finite ranges tG ∈ [tbottom
G , ttop

G]. Increasing tG,

the number of genes assigned to each element of the chain decreases until the size of the

module declines sharply at tG = ttop
G and either disappears completely or splits into two or

more sub-modules. Likewise decreasing tG beyond tbottom
G destabilizes the fixed point, since

many unrelated genes are added to the module that pull the module towards a different

fixed point. In this case the module may either ‘merge’ with another module or flow into

a completely different fixed point.

The five stable fixed points identified for tG = 1.8 correspond to the central functions

of the yeast organism: protein synthesis, cell-cycle (G1), mating, amino-acid biosynthesis

and stress response. Each module contains between 100 and 300 genes. Protein synthesis

and stress are the most dominant modules and comprise most of the experimental con-

ditions of the data set. In fact, these modules remain fixed points throughout the entire

range of thresholds considered here, and therefore can be considered the backbone of the

transcriptional network.

A visualization of this network is presented in Fig. 8a. For each threshold the corre-

sponding modules are displayed in a plane, such that their distance reflects their correlation

with respect to conditions. Moving to a higher threshold, nested sets of modules are kept

in the same position in each plane, while the “new” modules are placed such that their

position reflects best their correlation with the other modules. This organization of the

chains of nested modules is somewhat similar to the data presentation by hierarchical trees

commonly produced by cluster algorithms. However, in our case, chains of modules may

extend over a finite range of tG and distinct chains can contain common genes. Additional

information, such as the number of input seeds that converged to the same fixed pointed

(shown as pie charts in Fig. 8b), provide further inside into the transcriptional network.

In a previous analysis of the same data [23] we applied the map in eqs. (10) and (11) to a

variety of biologically motivated input-sets {g(0)
i } assembled according to prior knowledge

of the regulatory sequence or function of the genes, and reconstructed the modules from

recurrent realizations of the output-sets defined by g(1) and c(1). Remarkably, the ISA

(which requires no information beyond the expression data whatsoever) revealed essentially

all the co-regulated units that we found in this analysis, as well as several new transcription

modules that had not been identified previously. Moreover, the ISA provides additional

19

www.manaraa.com

insight into the modular organization through the evolution of the modules over different

threshold values. Studying the functional annotations of the genes assigned to the modules,

we observed a strong coherence for the genes that have been annotated in most of these

modules. This suggests that the ISA provides a biologically meaningful decomposition

into co-regulated units. A comprehensive discussion of the biological implications of this

analysis is beyond the scope of this work and will be pursued elsewhere [26].

8 Conclusions

We have presented a novel method for the analysis of gene expression data. The innovation

of our approach is twofold: On the conceptual level we provide a rigorous definition of what

we want to extract from the expression data by introducing the notion of a transcription

module (TM). Our definition in eq. (6) assigns to a TM both a set of co-regulated genes

and the set of experimental conditions under which this co-regulation is the most stringent.

The size of a TM depends critically on the associated set of two thresholds that determine

the similarity between the genes and conditions of the module, respectively. The genes

and conditions of a TM are mutually consistent implying that the latter can be obtained

from the former and vice versa. The notion of a TM is well motivated biologically. Ideally

the genes and conditions can be associated with a transcription factor or a (fraction of) a

pathway. Importantly distinct modules may share both common genes and conditions.

On the computational level our definition of a TM provides the basis for simple, but ef-

ficient algorithm to obtain the modules encoded in the expression data. Starting from a set

of randomly selected genes (or conditions) one refines iteratively the genes and conditions

until they are mutually consistent and match the definition of a TM. The important point

is that at each step of the iterations we apply a threshold function, thus maintaining only

significantly co-regulated genes and the associated co-regulating conditions. The threshold

stabilizes compact sets of co-regulated genes and prevents the introduction of noise from

unrelated genes and conditions. Using a sufficiently large number of initial random sets

it is possible to determine all the fixed points of the iterative scheme for a given pair of

thresholds. Scanning through a range of values for these thresholds decomposes the data

into modules at different resolutions. Since the computation time for each iteration of our

algorithm scales only linearly with the total number of genes it is particularly well-suited

for the analysis of large scale expression data.

Considering a simplified scenario of a single transcription module embedded in a noisy

background of unrelated genes, we showed analytically that the application of a threshold

improves the convergence properties of the iterative scheme. Specifically, we considered

the gene-vector that undergoes iterations as a stochastic entity and studied the evolution

of its distribution under the iterations for a given threshold. This allowed us to quantify

how the successful identification of the module depends on the size of the module and the

noise in the expression data.

20

www.manaraa.com

Our analytical insights were confirmed numerically using computer-generated expres-

sion data. More complex gene regulation were also simulated in-silico. Considering a

model with two overlapping transcription modules, we showed that applying the ISA using

a range of threshold values reveals the structure of the expression data at different resolu-

tions. Depending on the value of the threshold our algorithm can reveal each of the two

modules, as well as their union and intersection. Using large computer-generated expres-

sion matrices we studied the capability of the ISA to reveal a large number of overlapping

transcription modules from noisy expression data. We find that our method is significantly

more efficient at this task than standard tools, like SVD and clustering.

The threshold functions as a resolution parameter in our analysis of real expression data.

Using genome-wide expression data gathered in more than 1000 experimental conditions,

we decomposed the yeast genome into sets of transcription modules at different resolutions.

The modular decomposition reveals a hierarchical structure of the regulatory network.

At the lowest resolution we identified five transcription modules that correspond to the

central functions of the yeast organism. Increasing the threshold the number of modules

increases while their size decreases. The functional coherence of these modules indicates

both the reliability of our approach and the strong correlation between co-function and co-

regulation at the transcriptional level in yeast. A comprehensive discussion of the biological

implications of this analysis will be presented elsewhere [26].

Finally we note that our formalism can be applied to analyze any data set that consists

of multi-component measurements. While we presented our method in the context of

gene-expression data, it is clear that our approach is well-suited to reveal the modular

organization encoded in any data matrix. Applications of the ISA could include the analysis

of biological data on protein-protein interactions or cell growth assays, as well as other large

scale data, where a meaningful reduction of complexity is needed.

Acknowledgements: We thank J. Doyle for bringing our attention to the similarity

between SVD and the ISA. We thank E. Domany, Y. Kafri and S. Shnider for discussions

and comments on the manuscript. This work was supported by the NIH grant #A150562,

the Israeli Science Ministry and the Benoziyo center. S. B. is a Koshland fellow. N.B. is

the incumbent of the Soretta and Henry Shapiro career development chair.

A Appendix

A.1 Singular Value Decomposition

This appendix reviews Singular Value Decomposition (SVD), which is a common tool

for the analysis of expression data. We use notations that make the similarities with

the Iterative Signature Algorithm (ISA) the most apparent. SVD is used to reduce the

dimensionality of the data by projecting it onto a subspace in such a way that as little

21

www.manaraa.com

information is lost as possible. To this end consider the following matrix:

Em = cm gT
m , (37)

whose elements Ecg
m = g(g)

m c(c)
m are simply the products of the components of a given gene-

vector gm and condition-vectors cm. For two binary vectors gm and cm (whose elements

are either zero or one) Ecg
m is unity if the module m contains the gene g and the condition c

(i.e. the relevant vector components are g(g)
m = 1 and c(c)

m = 1). For real vectors gm ∈ IRNG

and cm ∈ IRNC it is useful to rewrite the matrix in eq. (37) as

Em = µmĉm ĝT
m , (38)

in terms of the normalized vectors ĝm = gm/|gm| and ĉm = cm/|cm|. This normalization

removes the ambiguity in the choice of gm and cm due to the invariance of Em under the

transformation gm → φ gm and cm → cm/φ, where φ 6= 0 is an arbitrary real number.

The prefactor µm = |gm| |cm| is just the product of the lengths of gm and cm. Then

each module is associated with a triple (µm, ĝm, ĉm) of a real number and two normalized

vectors. Comparing the magnitude of any two matrix elements Ecg
m and Eg′c′

m reveals the

relative importance between the gene-condition pairs (g, c) and (g′, c′) for module m.

Multiplying Em with an arbitrary gene-vector g gives

Em g = α ĉm with α = µm ĝT
m g , (39)

while multiplication of ET
m = µm ĝm ĉT

m with any condition-vector c gives

ET
m c = β ĝm with β = µm ĉT

m c . (40)

Thus Em and ET
m are projection operators onto the one-dimensional spaces spanned by

ĝm and ĉm, respectively. Consequently theses matrices have rank 1.

Now the basic idea of SVD is to reduce the complexity of the data by expressing E in

terms of a relatively small number NM(≪ NG, NC) of such rank 1 matrices:

E =
NM
∑

m

Em + RNM
. (41)

Here R denotes the residual term whose euklidean norm |R| =
√

∑

g,c(R
cg)2 has to be

minimized in order to optimize the decomposition into modules in the above equation.

It is instructive to consider first the minimization for the case NM = 1. We have

|R|2 =
∑

g,c

(Ecg − Ecg
m)2 =

∑

g,c

(Ecg − µmĉ(c)
m ĝ(g)

m)2 (42)

=
∑

g,c

(Ecg)2 − 2µmEcg ĉ(c)
m ĝ(g)

m + µ2
m(ĉ(c)

m ĝ(g)
m)2 . (43)

22

www.manaraa.com

Setting the derivative of |R|2 with respect to the component ĉ(c)
m ,

∂|R|2
ĉ
(c)
m

=
∑

g

−2µmEcgg(g)
m + 2µ2

m(ĝ(g)
m)2ĉ(c)

m , (44)

to zero we find that that µmĉ(c)
m =

∑

g Ecgg(g)
m /

∑

g(g
(g)
m)2 or, recalling the normalization of

ĝm and switching to vector notation:

µmĉm = E ĝm . (45)

Similarly equating ∂|R|2/ĝ(g)
m to zero it follows that

µmĝm = ET ĉm . (46)

This remarkable result implies that Em can be determined simply by solving simultaneously

the linear equations in eqs. (45) and (46). The latter is equivalent to a singular value

decomposition (SVD) of the matrix E:

GT EC = M , (47)

where G = (ĝ1, ĝ2, ..., ĝr) and C = (ĉ1, ĉ2, ..., ĉr) are orthogonal matrices. M is a diagonal

matrix of the same dimensions as E whose non-zero elements are given by µm and ordered

such that µ2
1 ≥ µ2

2 ≥ ... ≥ µ2
r. r ≤ min(NG, NC) is the rank of the expression matrix E.

Combining eqs. (45) and (46) one finds

ET Eĝm = µ2ĝm , (48)

EET ĉm = µ2ĉm , (49)

implying that G is composed of the eigenvectors ĝm of ET E and C consist of the eigen-

vectors ĉm of EET . One way to solve the above equations is start with some initial

gene-vector ĝ(0), obtain the corresponding condition-vector via ĉ(1) = Eĝ(0)/|Eĝ(0)| ac-

cording to eq. (45), and use the result to compute ĝ(1) = ET ĉ(1)/|ET ĉ(1)| using eq. (46).

Iterating this alternating procedure as in eqs. (13) and (14) converges to the pair (ĝ1, ĉ1)

associated with largest eigenvalue µ2
1 = |Eĝ1|2 provided that the initial vector ĝ(0) was not

orthogonal to ĝ1. Thus the predominant module emerges as the “fixed point” of the above

coupled equations.

From eq. (42) it follows that |R|2 =
∑

g,c(E
cg)2 − µ2

m. Hence for NM = 1 the norm of

the residual term, |R|2, is minimized exactly by the triple (µ1, ĝ1, ĉ1). It is straightforward

to extend this approach to the expansion of the expression matrix in terms of several

modules as in eq. (41). To this end one first computes E1 = µ1ĉ1ĝ
T
1 as described above

and applies the same scheme to the residual term R1 = E −E1. This yields E2 = µ2ĉ2ĝ
T
2

associated with the second largest eigenvalue µ2. Repeating this procedure sequentially

yields eventually the complete SVD of the matrix E. However, for practical purposes

23

www.manaraa.com

it is usually sufficient to compute only a limited numbers of triples (µm, ĝm, ĉm) with

m = 1, ..., NM until the norm of the residual term |RNM
|2 =

∑

g,c(E
cg)2−∑NM

m=1 µ2
m is below

a certain threshold. Thus, approximating the expression matrix in terms of a relatively

small number of modules, NM ≪ r reduces the complexity of the data.

There are two interpretations for the expansion in eq. (41) that depend on the way the

expression data is viewed. If we consider the data as a collection of gene-vectors gc as in

eq. (1), then eq. (41) translates into an expansion of these vectors in terms of a collection

of gene-vectors, i.e.

gc =
NM
∑

m=1

µmĉ(c)
m ĝm + gR

c (c = 1, ..., NC) , (50)

where {ĝm} is the basis (one for all gc), and the expansion coefficients are given by µmĉ(c)
m

(one for each gc). Moreover, for each gc there is a residual gene-vector gR
c , that determines

how well gc is approximated by the sum. Conversely, if we consider the data as a collection

of condition-vectors cg as in eq. (2), then the expansion in eq. (41) can be read as

cg =
NM
∑

m=1

µmĝ(g)
m ĉm + cR

g (g = 1, ..., NG) , (51)

where cR
g denotes the residual condition-vector. In this case the condition-vectors of the

modules, {ĉm}, provide the basis of expansion, while the expansion coefficients for each cg

are given by µmĝ(g)
m .

So far we have left the normalization of E unspecified. In fact the choice of normaliza-

tion follows from the interpretation of the data, if, instead of a minimal residual term in

eq. (42), one demands maximal variance among the principal components (the projections

of the data rows or columns onto the eigenvectors associated with the largest eigenvalues).

For example, if the expression data is viewed as a collection of gene-vectors, one would like

to find the vector ĝ1 that maximizes the variance of the principal components c
(c)
1 = gT

c ĝ1,

i.e.

V g
1 =

1

NC

NC
∑

c=1

(

c
(c)
1 − 〈c(c)

1 〉c
)2

=
1

NC
ĝT

1 Sgĝ1 . (52)

Here the bilinear term has been written in terms of the scatter matrix

Sg ≡
NC
∑

c=1

(gc − 〈gc〉c) (gc − 〈gc〉c)T . (53)

Maximizing V g
1 under the constraint that ĝT

1 ĝ1 = 1 is equivalent to finding the eigenvector

of Sg associated with the largest eigenvalue. For normalized data, Sg coincides with the

gene-gene correlation matrix

Cg = ET
C EC with Cgg′

g = ĉT
g ĉg′ . (54)

24

www.manaraa.com

Conversely, if the expression data is viewed as a collection of condition-vectors, the vector

ĉ1 that maximizes the variance of the components g
(g)
1 = cT

g ĉ1, is the eigenvector associated

with the largest eigenvalue of the scatter matrix

Sc ≡
NG
∑

g=1

(

cg − 〈cg〉g
) (

cg − 〈cg〉g
)T

. (55)

For normalized data, Sc equals to the condition-condition correlation matrix

Cc = EG ET
G with Ccc′

c = ĝT
c ĝc′ . (56)

Note, however, that since EG 6= EC , the matrices EC ET
C and ET

G EG are different from

Cc and Cg, and do not represent correlation matrices.

A.2 The variance of a product of random variables

By definition the mean of the product of two independent random variables a and b is the

product of their mean values, i.e.

〈ab〉 = 〈a〉〈b〉 . (57)

Since the expression for the variance of the product ab in eq. (19) may be somewhat less

obvious, we give its derivation here. From the definition of the variance

V (a) ≡ 〈(a − 〈a〉)2〉 = 〈a2〉 − 〈a〉2 , (58)

we obtain

V (a)V (b) =
(

〈a2〉 − 〈a〉2
) (

〈b2〉 − 〈b〉2
)

(59)

= 〈a2〉〈b2〉 − 〈a〉2〈b2〉 − 〈a2〉〈b〉2 + 〈a〉2〈b〉2 . (60)

Then using eqs. (57)-(60) it follows that

V (ab) = 〈a2b2〉 − 〈ab〉2 (61)

= 〈a2〉〈b2〉 − 〈a〉2〈b〉2 (62)

= V (a)V (b) + 〈a〉2〈b2〉 + 〈a2〉〈b〉2 − 2〈a〉2〈b〉2 (63)

= V (a)V (b) +
(

〈a2〉 − 〈a〉2
)

〈b〉2 +
(

〈b2〉 − 〈b〉2
)

〈a〉2 (64)

= V (a)V (b) + V (a)〈b〉2 + V (b)〈a〉2 . (65)

A.3 Accurate treatment of the noise propagation

In order to simplify our presentation of the propagation of the noise under the iterative

scheme in eq. (17) we used the approximate recursive equation in eq. (25) to derive the

25

www.manaraa.com

fixed point noise-to-signal ratio in eq. (26). Here we give an accurate treatment that is

valid even if N
(m)
G ≫ 1 is not satisfied.

First, note that if the iterative scheme converges, then for n → ∞ we have v
(n)
G =

v
(n−1)
G = v

(∗)
G and ṽ

(n)
G = ṽ

(n−1)
G = ṽ

(∗)
G . In this case we can write two fixed-point equations

ṽ
(∗)
G

(

1 − ∆NGvC

(N
(m)
G)2

)

=
vC

N
(m)
G

(v
(∗)
G + 1) , (66)

v
(∗)
G

(

1 − 1

N
(m)
G

)

= ṽ
(∗)
G . (67)

Solving eqs. (66) and (67) for v
(∗)
G we get:

v
(∗)
G =

(

1 − 1

N
(m)
G

)

N
(m)
G

vC
− ∆NG

N
(m)
G

− 1

−1

≃

N
(m)
G

vC
− NG

N
(m)
G

−1

. (68)

Here, the approximation on the right-hand-side neglects the 1/N
(m)
G term and yields exactly

the same result as obtained from the simplified iterative scheme in eq. (25) that ignores

the difference between v
(n)
G and ṽ

(n)
G .

Interestingly, a necessary condition for convergence can be derived also without any

approximation directly from eqs. (23) and (24). To this end note that eq. (24) implies

trivially that v
(n)
G ≥ ṽ

(n)
G . Then it follows that

v
(n)
G ≤ NGvC + N

(m)
G

(N
(m)
G)2

v
(n−1)
G +

vC

N
(m)
G

. (69)

Thus if

vC ≤ vcrit
C ≡ N

(m)
G (N

(m)
G − 1)

NG
(70)

the noise-to-signal ratio v
(n)
G converges to a finite value.

26

www.manaraa.com

References

[1] Schena M., Shalon D., Davis R.W., Brown P.O., Quantitative monitoring of gene expression

patterns with a complementary DNA microarray, Science 20; 270(5235): 467-70 (1995).

[2] DeRisi J.L., Iyer V.R., Brown P.O., Exploring the metabolic and genetic control of gene

expression on a genomic scale, Science 24; 278(5338): 680-6 (1997).

[3] Lander E., Array of hope, Nat Genet 21(1 Suppl.): 3-4 (1999). (See also other articles in this

issue.)

[4] Schulze A. and Downward J., Navigating gene expression using microarrays–a technology

review, Nat Cell Biol 3(8): E190-5 (2001).

[5] A comprehensive database for expression data from various organisms has been established

by:

Sherlock G. et al., The Stanford Microarray Database, Nucleic Acids Res 29(1): 152-155

(2001). See also: http://genome-www.stanford.edu/microarray .

[6] A complete list of the references used to compile the yeast expression data studied in this

paper can be found at: http://www.weizmann.ac.il/∼jan/NG/MainFrames.html .

[7] Eisen M.B., Spellman P.T., Brown P.O. and Botstein D., Cluster analysis and display of

genome-wide expression patterns, Proc Natl Acad Sci U S A 95: 14863-14868 (1998).

[8] Spellman P.T., et al., Comprehensive identification of cell cycle-regulated genes of the yeast

Saccharomyces cerevisiae by microarray hybridization, Mol Biol Cell 9(12): 3273-97 (1998).

[9] Alon U. et al, Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays, Proc Natl Acad Sci U S A 96:

6745-6750 (1999).

[10] Tavazoie S., Hughes J.D., Campbell M.J., Cho R.J., Church G.M., Systematic determination

of genetic network architecture, Nat Genet 22(3): 281-5 (1999).

[11] Perou C.M., et al., Distinctive gene expression patterns in human mammary epithelial cells

and breast cancers, Proc Natl Acad Sci U S A 96: 9212-9217 (1999).

[12] Bittner M., et al., Molecular classification of cutaneous malignant melanoma by gene expres-

sion profiling, Nature 3, 406(6795): 536-40 (2000)

[13] Scherf U. et al., A gene expression database for the molecular pharmacology of cancer, Nat

Genet 24: 236-244 (2000).

[14] Staunton J.E., et al., Chemosensitivity prediction by transcriptional profiling, Proc Natl Acad

Sci U S A 98: 10787-10792 (2001).

[15] Brazma A. and Vilo J., Gene expression data analysis, FEBS Lett 480: 17-24 (2000).

27

http://genome-www.stanford.edu/microarray
http://www.weizmann.ac.il/~jan/NG/MainFrames.html

www.manaraa.com

[16] Altman R.B., Raychaudhuri S., Whole-genome expression analysis: challenges beyond clus-

tering, Curr Opin Struct Biol 11(3): 340-7 (2001).

[17] Holter N.S. et al., Fundamental Patterns underlying gene expression profiles: Simplicity from

complexity, Proc Natl Acad Sci U S A 97: 8409-8414 (2000).

[18] Alter O., Brown P.O., Botsein, D., Singular value decomosition for genome-wide expression

data processing and modeling, Proc Natl Acad Sci U S A 97: 10101-10106 (2000).

[19] Tamayo P. et al., Interpreting patterns of gene expression with self-organizing maps: methods

and application to hematopoietic differentiation, Proc Natl Acad Sci U S A 96: 2907-2912

(1999).

[20] Bittner M., Meltzer P. and Trent J., Data analysis and integration: of steps and arrows, Nat

Genet 22: 213-215 (1999).

[21] Cheng Y. and Church G. M., Biclustering of expression data, Proc Int Conf Intell Syst Mol

Biol 8: 93-103 (2000).

[22] Getz G., Levine E. and Domany E., Coupled two-way clustering analysis of gene microarray

data, Proc Natl Acad Sci U S A 97: 12079-12084 (2000).

[23] Ihmels J., Friedlander G., Bergmann S., Sarig O., Ziv Y. and Barkai N., Revealing modular

organization in the yeast transcriptional network, Nat Genet 31(4): 370-377 (2002).

[24] Duda R.O., Hart P.E. and Stork D.G., Pattern Classification, John Wiley & Sons, Inc., New

York, 2nd edition (2001).

[25] Golub G. H. and Van Loan C. F., Matrix Computation, Johns Hopkins Univ. Press, Baltimore

(1996).

[26] Bergmann S., Ihmels J. and Barkai N., in preparation.

28

www.manaraa.com

conditions

ge
ne

s

expression data(a)

20 40 60 80 100

100

200

300

400

500

100

200

300

400

500

ge
ne

s

g
S
(g)

(b) gene scores

g
C
(g) g

G
(g)

10080604020
conditions

c
G
(c)co

nd
iti

on
 s

co
re

s

c
C
(c)

c
S
(c)

(c)

no normalization
condition normalization
gene normalization

Figure 1: How to properly normalize the expression matrix. (a) An in-silico expression

matrix, corresponding to two overlapping modules of equal size and strength, was generated

according to the model described in the text. The elements of the original expression

matrix Ecg, were scaled to Ecg
S ≡ Ecgsgsc, where sg ∈ [0, 1] and sc ∈ [0, 1] are random

scale factors selected from a uniform distribution for each gene g and condition c. From

ES we calculated the normalized expression matrices EG and EC according to eqs. (3)

and (4). (b) From the vector c1, whose non-zero components c
(c)
1 specify the conditions

of the upper-left module in (a) we calculated the vectors gS = ET
Sc1, gC = ET

Cc1 and

gG = ET
Gc1. We plot their components (horizontal axes) g

(g)
S (black), g

(g)
C (dark gray) and

g
(g)
G (light gray) as a function of the gene index (vertical axis). Only for gC , obtained

according to normalization used in the ISA, all the components associated with the genes

of the module are significantly larger than the others. (c) From the vector g1, whose non-

zero components g
(g)
1 specify the genes of the upper-left module in (a) we calculated the

vectors cS = ESg1, cC = ECg1 and gG = EGc1. We plot their components (horizontal

axes) c
(c)
S (black), c

(c)
C (dark gray) and c

(c)
G (light gray) as a function of the condition index

(vertical axis). Only for cG, obtained according to normalization used in the ISA, all the

components associated with the conditions of the module are significantly larger than the

others.

29

www.manaraa.com

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

ρ
G

ρ G(*
) (ρ

G
)

(a)

t = 0
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

t

ρ G(*
) (t

)

(b)

0 2 4 6 8
0

0.5

1

t

(c)

N
G
(m)(t) / N

G
(m)

∆ N
G

(t) / ∆ N
G

N
G
(m)(t) / [N

G
(m)(t)+∆ N

G
(t)]

Figure 2: Finding the fixed point value of the signal-to-noise ratio. (a) The fixed point value

of the signal-to-noise ratio ρ
(∗)
G (t) is found by solving eq. (34) (c.f. section 5). We plot its

right-hand-side RHS(ρG, t) ≡
[

Ñ
(m)
G ρ2

C − (Ñ
(m)
G + ∆ÑG)/Ñ

(m)
G

]1/2
as a function of ρG for

several values of the threshold t as indicated in the legend (setting NG = 6000, N
(m)
G = 60,

ρC = 1). RHS(ρG, t) depends on ρG and t through the effective numbers Ñ
(m)
G (t, ρG) and

∆ÑG(t) (defined in eqs. (32) and (33)) that denote the expected number of genes inside and

outside the module that passed the threshold. Each curve increases monotonically from

zero to its maximal value ρmax
G (t). For ρG ≫ t, the effective number Ñ

(m)
G approaches N

(m)
G .

In this limit ρmax
G (t) depends on t only through ∆Ñg, which goes to zero for t ≫ 1. Thus

ρmax
G (t) →

√

N
(m)
G ρ2

C − 1 asymptotically. According to eq. (34) the fixed-point solutions for

the signal-to-noise ratio ρ
(∗)
G (t) are given by ρG = RHS(ρG, t) and therefore correspond to

the intersections (indicated by the big dots) of these curves with the diagonal (shown as a

dashed line). (b) The solutions in (a) are plotted as a function of the threshold t. For a

relatively small threshold (t <∼ 2) ρ
(∗)
G (ρG, t) increases rapidly as a function of t, saturates to

ρmax
G for t >∼ 2 and suddenly falls off to zero at a certain threshold ttrans(≈ 6). This behavior

can be understood from (a): For a low threshold the intersection of curves for RHS(ρG, t)

with the diagonal appears at small values of ρG. For larger t the intersections occur in the

saturated regime of RHS(ρG, t), such that ρG ≃ ρmax
G (t). However, if t is too large the

curves do not intersect with the diagonal and there is no solution. (c) Ñ
(m)
G (t)/N

(m)
G (dark

gray) as well as ∆ÑG(t)/∆NG (light gray) and ̺(t) ≡ Ñ
(m)
G (t)/(Ñ

(m)
G (t)+∆ÑG(t)) (black)

are shown as a function of t. ̺(t) ≃ 1 for 3 <∼ t < 6, indicating the optimal regime for the

threshold.

30

www.manaraa.com

5

10

15

t

ρ C
ρ

G
(*)(t,ρ

C
)(a)

−2 −1 0 1 2 3 4 5 6 7 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4 0

0.2

0.4

0.6

0.8

1

t

ρ C

r(t,ρ
C

)(b)(b)

−2 −1 0 1 2 3 4 5 6 7 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 3: Properties of the fixed point value of the signal-to-noise ratio. (a) The fixed

point value of the signal-to-noise ratio, ρ
(∗)
G (t, ρC), characterizes the separability between

the gene score distributions for the genes inside and outside the single module (c.f. sec-

tion 5 for details). The plot shows ρ
(∗)
G (t, ρC) as a function of both the threshold t and

the (fixed) signal-to-noise ratio in the expression matrix ρC. For very small thresholds

ρ
(∗)
G (t, ρC) vanishes if ρC is below some critical value ρcrit

C ≈ 1.3. However, increasing the

threshold the iterations converge to a finite fixed-point, ρ
(∗)
G (t, ρC) > 0, even if ρC < ρcrit

C

(but ρC > ρ̃crit
C

>∼ 0.5). There is an optimal regime for the threshold t, where ρ
(∗)
G (t, ρC) is

(near to) maximal. Within this regime ρ
(∗)
G (t, ρC) depends only weakly on t, so the conver-

gence is robust with respect to the exact choice of the threshold. The size of this regime

increases with ρC. (b) The ratio r(t, ρC) ≡ (ρ
(∗)
G (t, ρC) − ρ

(∗)
G (ρC))/ρ

(∗)
G (t, ρC) characterizes

the improvement in the identification of transcription modules that is achieved by the

application of the threshold function. (ρ
(∗)
G (ρC) denotes the fixed-point value of the signal-

to-noise ratio in the absence of a threshold, and r(t, ρC) is set to zero for ρ
(∗)
G (t, ρC) = 0.)

We show r(t, ρC) as function of t and ρC. The regime where ρC < ρcrit
C

is subdivided into a

white region (r(t, ρC) = 1), where the iterative scheme only converges to a positive value,

ρ
(∗)
G (t, ρC) > 0, due to the threshold and a black area (r(t, ρC) = 0), where the iterative

schemes does not converge to a positive value implying that the module cannot be iden-

tified in this regime. Note that also for ρC > ρcrit
C , where the iterative schemes converges

to a positive value even without a threshold, there exists a large region in the parameter

space of t and ρC (the light gray area for r(t, ρC)), where ρ
(∗)
G (t, ρC) is significantly larger

than ρ
(∗)
G (t).

31

www.manaraa.com

−0.1 −0.05 0 0.05 0.1 0.15
0

0.1

0.2

score

fr
ac

tio
n

initial input set distribution(a)

genes not in module
genes in module

1

iterations w/o threshold(b)

2

3

4

5

ite
ra

tio
n

(n
)

6

7

8

9

−0.1 −0.05 0 0.05 0.1

10

1

iterations with threshold(c)

2

3

4

5

ite
ra

tio
n

(n
)

6

7

8

9

0 0.05 0.1 0.15 0.2

10

init 1 2 3 4 5 6 7 8 9 10
0

2

4

6

iteration (n)

ρ G(n
)

signal−to−noise evolution(d)

numeric simulation
(without t)
theor. prediction
(without t)
analytic fixed point

Figure 4: Evolution of the score distributions under the ISA. (a) The distributions of the

gene scores of 100 input sets which serve as seeds for the iterations of our algorithm: The

distribution of the genes that are not part of the TM (light gray) has a vanishing mean

value. The genes belonging to the module (black) are distributed with a positive mean

value. Note that the two initial distributions cannot be distinguished from each other

accurately. (b−c) Evolution of the two distributions under the iterative scheme defined by

eq. (17). (b) Without applying a threshold, the mean of the signal-distribution decreases

in each iteration and the separability of the two distributions does not improve. (c) When

a threshold (t = 1) is applied the mean of the signal distribution increases in each step

until it saturates at a value where the two distributions are well separated. (d) The signal-

to-noise ratio ρ
(n)
G characterizes the separability between the gene score distributions for

the genes within and outside the module (c.f. section 5 for details). We plot ρ
(n)
G as a

function of the number of iterations n. The evolution of ρ
(n)
G under the iterations scheme

with (squares) and without (circles) a threshold obtained from the numerical simulation

(gray) are in good agreement with the theoretical predictions (black) according to eq. (25).

We used NG = 1700, N
(m)
G = 40 and ρC = 1 for this figure.

32

www.manaraa.com

ge
ne

s

(a) expression data

t
G

 = −2
1
::

500

(b) converged gene sets

ge
ne

s

t
G

 = −1
1
::

500

ge
ne

s

t
G

 = 0
1
::

500

ge
ne

s

t
G

 = 1
1
::

500

conditions

ge
ne

s

t
G

 = 2

1 100

1
::

500
i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

500

1000
M

1
 ∪ M

2
M

1

M
2

M
1
 ∩ M

2

gene threshold t
G

se
ts

(c) set distribution
set index

Figure 5: Identification of overlapping modules. An in-silico expression matrix describing

500 genes under 100 experimental conditions was generated according to the model intro-

duced in the text. The data corresponds to two overlapping transcription modules M1 and

M2, each containing 250 genes and 50 conditions. (a) The expression matrix is shown for

comparison on the left of each row. (b−c) Using this matrix we applied the ISA to 1000

input sets composed of randomly chosen genes. Iterations were performed using different

choices of the threshold tG. (b) The boxes in each row represent 10 of the resulting con-

verged gene sets, that were obtained for tG as indicated on the left. Each box i = 1, ..., 10

is composed of 500 lines that specify the genes which appear in the corresponding fixed

point. Genes that belong to the converged set are represented by a dark gray line, while

the remaining genes are shown in light gray. For tG ≃ −2 the output sets contain all the

genes, tG ≃ −1 yields output sets containing the genes that are associated with either of

the two modules, for tG ≃ 0 there are two types of output sets, comprising either the genes

of M1 or of M2, for tG ≃ 1 all the output set contain only those genes that belong to both

modules and for tG ≃ 2 the output sets are essentially empty. (c) The number of sets

that converged (within 95% accuracy) to M1
⋃

M1 (solid), M1 (dotted), M2 (dashed) or

M1
⋂

M1 (dash-dotted) are plotted as a function of tG. Scanning over different thresholds

reveals the modular structure of the expression data (M1
⋃

M1 → M1, M2 → M1
⋂

M1).

33

www.manaraa.com

0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

σ (added noise)

F
ra

ct
io

n
 o

f
co

rr
e

ct
ly

 id
e

n
tif

ie
d

 g
e

n
e

s
(m

o
d

u
le

s)
 [

%
]

Clustering

Signature Approach

SVD

ISA: identified genes per module
ISA: identified modules
Clustering: identified genes per cluster
SVD: overlap with largest eigenvectors

Figure 6: Module identification from noisy expression data. In-silico expression matrices

for 1050 genes under 1000 conditions, corresponding to 25 non-overlapping transcription

modules of different sizes, were generated according to the model described in the text.

Noise from a uniform distribution was superimposed onto this expression data. The width

σ of this noise distribution was varied, simulating different levels of noise. We quantified

the efficiency of different algorithms to retrieve the modules from the expression data

as described in the text. We show the fraction of correctly identified genes for the ISA

(circles), hierarchical clustering (squares) and SVD (triangles). For the ISA we also the

fraction of correctly identified modules are indicated (asterisks). SVD is very sensitive to

the addition of noise and fails to identify the modules accurately, even for a small level of

noise. Clustering can handle a moderate amount of noise, but not as much as the ISA.

34

www.manaraa.com

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

n
TF

F
ra

ct
io

n
 o

f
co

rr
e

ct
ly

 id
e

n
tif

ie
d

 g
e

n
e

s
(m

o
d

u
le

s)
 [
%

]

Clustering

ISA

ISA: identified genes per module
ISA: identified modules
Clustering: identified genes per cluster
Clustering: identified clusters
SVD: overlap with largest eigenvectors

SVD

Figure 7: Module identification in the presence of combinatorial regulation. In-silico ex-

pression matrices corresponding to 25 overlapping modules were generated according to a

model that allows for combinatorial regulation (see text for details). The degree of overlap

between the modules is specified by the average number of transcription factors involved

in the regulation of each gene (nTF). Only for nTF = 1 each gene is associated with ex-

actly one transcription factor. For larger values of nTF distinct modules share common

genes. We applied the SVD, hierarchical clustering (see Ref. [23] for related results) and

the ISA to the expression matrices generated for nTF = 1, ..., 6 and evaluated the outputs

as described in the text. The ISA could successfully identify all the transcription mod-

ules even in the case of highly overlapping modules (asterisks), The fraction of correctly

identified genes per module only decreases slightly as a function of nTF (circles). In con-

trast, for nTF > 1 the identification capabilities of clustering (squares/crosses) and SVD

(triangles) rapidly decrease. This is because the clustering algorithm does not allow for

multiple assignments of one gene to different modules and therefore usually captures only

small, incomplete fractions of the overlapping modules. Similarly, if the expression matrix

cannot be reorganized into block-diagonal shape due to the overlap between the modules,

the eigenvectors identified by SVD fail to characterize the modules properly.

35

www.manaraa.com

1 Protein synthesis

2 Mating

3 Stress

4 Amino acid synthesis

5 Cell cycle (G1)

t
G

=1.8 t
G

=2.1 t
G

=2.4

1

2

3

45

Figure 8: Modular organization of yeast expression data. The iterative signature algorithm

was applied to genome wide yeast expression data gathered by more than 1000 DNA-chip

experiments. (a) The figure shows the identified modules at three different gene-thresholds

tG = {1.8, 2.1, 2.4}. For each threshold the corresponding modules are displayed in a plane,

such that their distance reflects their correlation with respect to conditions. Moving to a

higher threshold, corresponding of modules are kept in the same position in each plane,

while the “new” modules are placed such that their position reflects best their correlation

with the other modules. The left-most plane corresponds to the lowest threshold (tG = 1.8),

where only five fixed points exist. The corresponding modules can be associated with

central functions of the yeast organism: protein synthesis, cell-cycle (G1), mating, amino-

acid biosynthesis and stress response. We use color coding to indicate which of the fixed

points that emerge at higher thresholds are related to these five central modules (i.e. they

would convergence to the respective module at the lowest threshold). b) The pie charts

show for the number of random input sets that converged to the respective fixed point.

The color coding is as in (a).

36

